资源类型

期刊论文 168

年份

2024 1

2023 16

2022 17

2021 18

2020 12

2019 6

2018 7

2017 5

2016 7

2015 4

2014 7

2013 7

2012 8

2011 9

2010 13

2009 7

2008 8

2007 5

2006 1

2005 3

展开 ︾

关键词

柔性机器人 2

液体燃料 2

离子液体 2

N-糖组 1

CCD影像 1

CO2 加氢 1

GPS浮标 1

HY-2 1

N-聚糖 1

TOC 1

TRIZ 1

[BMIm]PF6 1

[C6MIm]PF6 1

[PMIm]PF6 1

三相界面 1

两硬煤层 1

中药 1

主-客体化学 1

井帮位移 1

展开 ︾

检索范围:

排序: 展示方式:

Numerical simulation of liquid falling film on horizontal circular tubes

Fengdan SUN, Songlin XU, Yongchuan GAO

《化学科学与工程前沿(英文)》 2012年 第6卷 第3期   页码 322-328 doi: 10.1007/s11705-012-1296-z

摘要: The objective of this study is to investigate numerically the flow characteristics of falling film on horizontal circular tubes. Numerical simulations are performed using FLUENT for 2D configurations with one and two cylinders. The volume of fluid method is used to track the motion of liquid falling film and the gas-liquid interface. The effect of flow characteristics on heat and transfer coefficient may be remarkable, although it has been neglected in previous studies. The velocity distribution and the film thickness characteristics on the top tube, some special flow characteristics on the bottom tube, intertube flow modes and effect of liquid feeder height on flow characteristics have been studied. Our simulations indicate that 1) the velocity distributions of the upper and lower parts of the tube are not strictly symmetric and non-uniform, 2) the film thickness depends on flow rate and angular distributions, 3) the flow characteristics of the top tube are different from those of the bottom tube, 4) three principal and two intermediate transition modes are distinguished, and 5) the liquid feed height plays an important role on the formation of falling film. The numerical results are in a good agreement with the theoretical values by the Nusselt model and the reported results.

关键词: falling film     horizontal tube     flow characteristics     film thickness     liquid feeder height    

Yield-height correlation and QTL localization for plant height in two lowland switchgrass populations

Shiva O. MAKAJU, Yanqi WU, Michael P. ANDERSON, Vijaya G. KAKANI, Michael W. SMITH, Linglong LIU, Hongxu DONG, Dan CHANG

《农业科学与工程前沿(英文)》 2018年 第5卷 第1期   页码 118-128 doi: 10.15302/J-FASE-2018201

摘要: Switchgrass ( L.), as a model herbaceous crop species for bioenergy production, is targeted to improve biomass yield and feedstock quality. Plant height is a major component contributing to biomass yield. Accordingly, the objectives of this research were to analyze phenotypic variation for biomass and plant height and the association between them and to localize associated plant height QTLs. Two lowland switchgrass mapping populations, one selfed and another hybrid population established in the field at Perkins and Stillwater, Oklahoma, were deployed in the experiment for two years post establishment. Large genetic variation existed for plant biomass and height within the two populations. Plant height was positively correlated with biomass yield in the selfed population ( = 0.39, <0.0001) and the hybrid population ( = 0.41, <0.0001). In the selfed population, a joint analysis across all environments revealed 10 QTLs and separate analysis for each environment, collectively revealed 39 QTLs related to plant height. In the hybrid population, the joint analysis across overall environments revealed 35 QTLs and the separate analysis for each environment revealed 38 QTLs. The findings of this research contribute new information about the genetic control for plant height and will be useful for future plant breeding and genetic improvement programs in lowland switchgrass.

关键词: yield-height     QTL localization     lowland switchgrass    

Influence of nozzle height to width ratio on ignition and NO

Liutao SUN, Yonghong YAN, Rui SUN, Zhengkang PENG, Chunli XING, Jiangquan WU

《能源前沿(英文)》 2021年 第15卷 第2期   页码 431-448 doi: 10.1007/s11708-021-0726-3

摘要: To improve the ignition behavior and to reduce the high NO emissions of blended pulverized fuels (PF) of semicoke (SC), large-scale experiments were conducted in a 300 kW fired furnace at various nozzle settings, i.e., ratios (denoted by / ) of the height of the rectangular burner nozzle to its width of 1.65, 2.32, and 3.22. The combustion tests indicate that the flame stability, ignition performance, and fuel burnout ratio were significantly improved at a nozzle setting of / = 2.32. The smaller / delayed ignition and caused the flame to concentrate excessively on the axis of the furnace, while the larger / easily caused the deflection of the pulverized coal flame, and a high-temperature flame zone emerged close to the furnace wall. NO emissions at the outlet of the primary zone decreased from 447 to 354 mg/m (O = 6%), and the ignition distance decreased from 420 to 246 mm when the / varied from 1.65 to 3.22. Furthermore, the ratio (denoted by / ) of the strong reduction zone area to the combustion reaction zone area was defined experimentally by the CO concentration to evaluate the reduction zone. The / rose monotonously, but its restraining effects on NO formation decreased as / increased. The results suggested that in a test furnace, regulating the nozzle / conditions sharply reduces NO emissions and improves the combustion efficiency of SC blends possessing an appropriate jet rigidity.

关键词: rectangular jet burner     nozzle height to width ratio     ignition characteristics     pyrolyzed semicoke (SC) and bituminous blend     NOx formation    

Chemical probe systems for assessing liquidliquid mixing efficiencies of reactors

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1323-1335 doi: 10.1007/s11705-022-2275-7

摘要: Liquid–liquid mixing, including homogeneous and heterogeneous mixing, widely exists in the chemical industry. How to quantitatively characterize the mixing performance is important for reactor assessment and development. As a convenient and direct method for mixing characterization, the chemical probe method uses some special test reactions to characterize the mixing results. Here, the working principle and selection requirements of this method are introduced, and some common chemical probe systems for homogeneous and heterogeneous mixing processes are reviewed. The characteristics and applications of these systems are illustrated. Finally, the development of the new system is proposed.

关键词: mixing     chemical probe     liquid–liquid     heterogeneous    

Microfluidic production of liposomes through liquidliquid phase separation in ternary droplets

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 1017-1022 doi: 10.1007/s11705-021-2118-y

摘要: Liposomes, the self-assembled phospholipid vesicles, have been extensively used in various fields such as artificial cells, drug delivery systems, biosensors and cosmetics. However, current microfluidic routes to liposomes mostly rely on water-in-oil-in-water double emulsion droplets as templates, and require complex fabrication of microfluidic devices, and tedious manipulation of multiphase fluids. Here we present a simple microfluidic approach to preparing monodisperse liposomes from oil-in-water droplets. For demonstration, we used butyl acetate-water-ethanol ternary mixtures as inner phase and an aqueous solution of surfactants as outer phase to make oil-in-water droplets, which can evolve into water-in-oil-in-water double emulsion droplets by liquid–liquid phase separation of ternary mixtures. Subsequently, the resultant water-in-oil-in-water droplets underwent a dewetting transition to form separated monodisperse liposomes and residual oil droplets, with the assistance of surfactants. The method is simple, does not require complex microfluidic devices and tedious manipulation, and provides a new platform for controllable preparation of liposomes.

关键词: microfluidics     liposomes     ternary droplets     phase separation    

Energy distribution between liquid hydrogen and liquid oxygen temperatures in a Stirling/pulse tube refrigerator

《能源前沿(英文)》 2023年 第17卷 第4期   页码 516-526 doi: 10.1007/s11708-022-0844-6

摘要: A two-stage gas-coupled Stirling/pulse tube refrigerator (SPR), whose first and second stages respectively involve Stirling and pulse tube refrigeration cycles, is a very promising spaceborne refrigerator. The SPR has many advantages, such as a compact structure, high reliability, and high performance, and is expected to become an essential refrigerator for space applications. In research regarding gas-coupled regenerative refrigerator, the energy flow distribution between the two stages, and optimal phase difference between the pressure wave and volume flow, are two critical parameters that could widely influence refrigerator performance. The effects of displacer displacement on the pressure wave, phase difference, acoustic power distribution, and inter-stage cooling capacity shift of the SPR have been investigated experimentally. Notably, to obtain the maximum first-stage cooling capacity, an inflection point in displacement exists. When the displacer displacement is larger than the inflection point, the cooling capacity could be distributed between the first and second stages. In the present study, an SPR was designed and manufactured to work between the liquid hydrogen and liquid oxygen temperatures, which can be used to cool small-scale zero boil-off systems and space detectors. Under appropriate displacer displacement, the SPR can reach a no-load cooling temperature of 15.4 K and obtain 2.6 W cooling capacity at 70 K plus 0.1 W cooling capacity at 20 K with 160 W compressor input electric power.

关键词: Stirling/pulse tube refrigerator     displacer displacement     space application     phase shift     energy distribution    

Studies on the liquid-liquid interfacial mass transfer process using holographic interferometry

ZHAO Chaofan, ZHU Chunying, MA Youguang

《化学科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 1-4 doi: 10.1007/s11705-008-0006-3

摘要: This paper aims at the interfacial phenomena of liquid-liquid mass transfer and its characteristic. By using the real-time holographic technique, the concentration distributions on the aqueous side were obtained according to holographic diagrams of mass transfer of ethanol through the interface of oil and water at different initial concentrations. Furthermore, the concentrations near the interface and the mass transfer coefficients were attained. A correlation of concentration near the interface to the concentration of the solute in the oil side was proposed. An approach of interfacial energy with solute concentration was established, and the calculated results are at good agreement with the experimental data. It is indicated that the liquid-liquid mass transfer process is approximately in accordance with two-film theory, the interfacial performance may be changed by the addition of the solute, and the interface of liquid-liquid is non-equilibrium thermodynamically during the mass transfer process.

关键词: liquid-liquid     different     real-time holographic     addition     transfer    

Numerical analysis of nonlinear dynamic behavior of earth dams

Babak EBRAHIMIAN

《结构与土木工程前沿(英文)》 2011年 第5卷 第1期   页码 24-40 doi: 10.1007/s11709-010-0082-6

摘要: A numerical study is conducted to investigate the dynamic behavior of earth dams. The numerical investigation employs a fully nonlinear dynamic finite difference analysis incorporating a simple elastic perfectly plastic constitutive model to describe the stress-strain response of the soil and the Rayleigh damping to increase the level of hysteretic damping. The extended Masing rules are implemented into the constitutive model to explain more accurately the soil response under general cyclic loading. The soil stiffness and hysteretic damping change with loading history. The procedures for calibrating the constructed numerical model with centrifuge test data and also a real case history are explained. For the latter, the Long Valley (LV) earth dam subjected to the 1980 Mammoth Lake earthquake as a real case-history is analyzed and the obtained numerical results are compared with the real measurements at the site in both the time and frequency domains. Relatively good agreement is observed between computed and measured quantities. It seems that the Masing rules combined with a simple elasto-plastic model gives reasonable numerical predictions. Afterwards, a comprehensive parametric study is carried out to identify the effects of dam height, input motion characteristics, soil behavior, strength of the shell materials and dam reservoir condition on the dynamic response of earth dams. Three real earthquake records with different levels and peak acceleration values (PGAs) are used as input motions. The results show that the crest acceleration decreases when the dam height increases and no amplification is observed. Further, more inelastic behavior and more earthquake energy absorption are observed in higher dams.

关键词: earth dam     numerical     nonlinear response     dynamic analysis     earthquake     dam height    

Perspective on gallium-based room temperature liquid metal batteries

《能源前沿(英文)》 2022年 第16卷 第1期   页码 23-48 doi: 10.1007/s11708-022-0815-y

摘要: Recent years have witnessed a rapid development of deformable devices and epidermal electronics that are in urgent request for flexible batteries. The intrinsically soft and ductile conductive electrode materials can offer pivotal hints in extending the lifespan of devices under frequent deformation. Featuring inherent liquidity, metallicity, and biocompatibility, Ga-based room-temperature liquid metals (GBRTLMs) are potential candidates to fulfill the requirement of soft batteries. Herein, to illustrate the glamour of liquid components, high-temperature liquid metal batteries (HTLMBs) are briefly summarized from the aspects of principle, application, advantages, and drawbacks. Then, Ga-based liquid metals as main working electrodes in primary and secondary batteries are reviewed in terms of battery configurations, working mechanisms, and functions. Next, Ga-based liquid metals as auxiliary working electrodes in lithium and nonlithium batteries are also discussed, which work as functional self-healing additives to alleviate the degradation and enhance the durability and capacity of the battery system. After that, Ga-based liquid metals as interconnecting electrodes in multi-scenarios including photovoltaics solar cells, generators, and supercapacitors (SCs) are interpreted, respectively. The summary and perspective of Ga-based liquid metals as diverse battery materials are also focused on. Finally, it was suggested that tremendous endeavors are yet to be made in exploring the innovative battery chemistry, inherent reaction mechanism, and multifunctional integration of Ga-based liquid metal battery systems in the coming future.

关键词: liquid metals     soft electrodes     flexible batteries     deformable energy supply devices     epidermal electronics    

Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane

Hui LI, Yuanbin SHE, Tao WANG

《化学科学与工程前沿(英文)》 2012年 第6卷 第3期   页码 356-368 doi: 10.1007/s11705-012-0903-3

摘要: The latest progress and developments in catalysts for the oxidation of cyclohexane are reviewed. Catalytic systems for the oxidation of cyclohexane including metal supported, metal oxides, molecular sieves, metal substituted polyoxometalates, photocatalysts, organocatalysts, Gif systems, metal-organic catalysts and metalloporphyrins are discussed with a particular emphasis on metalloporphyrin catalytic systems. The advantages and disadvantages of these methods are summarized and analyzed. Finally, the development trends in the oxidation technology of cyclohexane are examined.

关键词: cyclohexane     liquid-phase oxidation     catalysis    

Residence time distribution and modeling of the liquid phase in an impinging stream reactor

Xingjun WANG, Xianhui HU, Lishun HU, Guangsuo YU, Fuchen WANG,

《化学科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 353-359 doi: 10.1007/s11705-009-0262-x

摘要: Based on some experimental investigations of liquid phase residence time distribution (RTD) in an impinging stream reactor, a two-dimensional plug-flow dispersion model for predicting the liquid phase RTD in the reactor was proposed. The calculation results of the model can be in good agreement with the experimental RTD under different operating conditions. The axial liquid dispersion coefficient increases monotonously with the increasing liquid flux, but is almost independent of gas flux. As the liquid flux and the gas flux increase, the liquid dispersion coefficient of center-to-wall decreases. The axial liquid dispersion coefficient is much larger than that of center-to-wall, which indicates that the liquid RTD is dominated mainly by axial liquid dispersion in the impinging stream reactor.

关键词: RTD     liquid dispersion     reactor     liquid     independent    

Lifecycle carbon footprint and cost assessment for coal-to-liquid coupled with carbon capture, storage

《能源前沿(英文)》 2023年 第17卷 第3期   页码 412-427 doi: 10.1007/s11708-023-0879-3

摘要: The coal-to-liquid coupled with carbon capture, utilization, and storage technology has the potential to reduce CO2 emissions, but its carbon footprint and cost assessment are still insufficient. In this paper, coal mining to oil production is taken as a life cycle to evaluate the carbon footprint and levelized costs of direct-coal-to-liquid and indirect-coal-to-liquid coupled with the carbon capture utilization and storage technology under three scenarios: non capture, process capture, process and public capture throughout the life cycle. The results show that, first, the coupling carbon capture utilization and storage technology can reduce CO2 footprint by 28%–57% from 5.91 t CO2/t·oil of direct-coal-to-liquid and 24%–49% from 7.10 t CO2/t·oil of indirect-coal-to-liquid. Next, the levelized cost of direct-coal-to-liquid is 648–1027 $/t of oil, whereas that of indirect-coal-to-liquid is 653–1065 $/t of oil. When coupled with the carbon capture utilization and storage technology, the levelized cost of direct-coal-to-liquid is 285–1364 $/t of oil, compared to 1101–9793 $/t of oil for indirect-coal-to-liquid. Finally, sensitivity analysis shows that CO2 transportation distance has the greatest impact on carbon footprint, while coal price and initial investment cost significantly affect the levelized cost of coal-to-liquid.

关键词: coal-to-liquid     carbon capture     utilization and storage (CCUS)     carbon footprint     levelized cost of liquid     lifecycle assessment    

Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels

Jianchun JIANG,Junming XU,Zhanqian SONG

《农业科学与工程前沿(英文)》 2015年 第2卷 第1期   页码 13-27 doi: 10.15302/J-FASE-2015050

摘要: Increased demand for liquid transportation fuels, environmental concerns and depletion of petroleum resources requires the development of efficient conversion technologies for production of second-generation biofuels from non-food resources. Thermochemical approaches hold great potential for conversion of lignocellulosic biomass into liquid fuels. Direct thermochemical processes convert biomass into liquid fuels in one step using heat and catalysts and have many advantages over indirect and biological processes, such as greater feedstock flexibility, integrated conversion of whole biomass, and lower operation costs. Several direct thermochemical processes are employed in the production of liquid biofuels depending on the nature of the feedstock properties: such as fast pyrolysis/liquefaction of lignocellulosic biomass for bio-oil, including upgrading methods, such as catalytic cracking and hydrogenation. Owing to the substantial amount of liquid fuels consumed by vehicular transport, converting biomass into drop-in liquid fuels may reduce the dependence of the fuel market on petroleum-based fuel products. In this review, we also summarize recent progress in technologies for large-scale equipment for direct thermochemical conversion. We focus on the technical aspects critical to commercialization of the technologies for production of liquid fuels from biomass, including feedstock type, cracking catalysts, catalytic cracking mechanisms, catalytic reactors, and biofuel properties. We also discuss future prospects for direct thermochemical conversion in biorefineries for the production of high grade biofuels.

关键词: lignocellulosic biomass     thermochemical     liquid fuels     upgrading     biofuels    

Emerging roles of liquid metals in carbon neutrality

《能源前沿(英文)》 2022年 第16卷 第3期   页码 393-396 doi: 10.1007/s11708-022-0829-5

Trace analysis of off-flavor/odor compounds in water using liquid-liquid microextraction coupled with

Jian LU,Paul S. WILLS,P. CHRIS WILSON

《环境科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 477-481 doi: 10.1007/s11783-015-0820-z

摘要: A rapid, inexpensive and laboratory friendly method was developed for analysis of off-flavor/odor compounds in fresh and salt water using gas chromatography with chemical ionization-tandem mass spectrometry. Off-flavor/odor compounds included geosmin, 2-methylisoborneol (MIB), 2-isobutyl-3-methyoxypyrazine (IBMP), and 2-isopropyl-3-methoxypyrazine (IPMP). Using this method, a single sample can be extracted within minutes using only 1 mL of organic solvent. The ion transitions for IPMP, IBMP, MIB, and geosmin were 153>121, 167>125, 152>95, and 165>109, respectively. The linearity of this method for analyzing MIB ranged from 4 to 200 ng·L , and from 0.8 to 200 ng·L for the other analytes. Method recoveries ranged from 97% to 111% and percent relative standard deviations ranged from 3% to 9%, indicating that the method is accurate, precise, and reliable.

关键词: off-flavor/odor compounds     liquid-liquid microextraction     gas chromatography-tandem mass spectrometry    

标题 作者 时间 类型 操作

Numerical simulation of liquid falling film on horizontal circular tubes

Fengdan SUN, Songlin XU, Yongchuan GAO

期刊论文

Yield-height correlation and QTL localization for plant height in two lowland switchgrass populations

Shiva O. MAKAJU, Yanqi WU, Michael P. ANDERSON, Vijaya G. KAKANI, Michael W. SMITH, Linglong LIU, Hongxu DONG, Dan CHANG

期刊论文

Influence of nozzle height to width ratio on ignition and NO

Liutao SUN, Yonghong YAN, Rui SUN, Zhengkang PENG, Chunli XING, Jiangquan WU

期刊论文

Chemical probe systems for assessing liquidliquid mixing efficiencies of reactors

期刊论文

Microfluidic production of liposomes through liquidliquid phase separation in ternary droplets

期刊论文

Energy distribution between liquid hydrogen and liquid oxygen temperatures in a Stirling/pulse tube refrigerator

期刊论文

Studies on the liquid-liquid interfacial mass transfer process using holographic interferometry

ZHAO Chaofan, ZHU Chunying, MA Youguang

期刊论文

Numerical analysis of nonlinear dynamic behavior of earth dams

Babak EBRAHIMIAN

期刊论文

Perspective on gallium-based room temperature liquid metal batteries

期刊论文

Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane

Hui LI, Yuanbin SHE, Tao WANG

期刊论文

Residence time distribution and modeling of the liquid phase in an impinging stream reactor

Xingjun WANG, Xianhui HU, Lishun HU, Guangsuo YU, Fuchen WANG,

期刊论文

Lifecycle carbon footprint and cost assessment for coal-to-liquid coupled with carbon capture, storage

期刊论文

Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels

Jianchun JIANG,Junming XU,Zhanqian SONG

期刊论文

Emerging roles of liquid metals in carbon neutrality

期刊论文

Trace analysis of off-flavor/odor compounds in water using liquid-liquid microextraction coupled with

Jian LU,Paul S. WILLS,P. CHRIS WILSON

期刊论文